Press "Enter" to skip to content

Best slitting line supplier factory

John Concrane 0

Premium transformer lamination supplier: Insulation level: The insulation level of a transformer refers to the insulation performance of the transformer at the time of design. For example, a 220kV transformer means that the designed insulation voltage of the transformer is 220 kV. Cooling method: The cooling method of the transformer refers to the heat dissipation method of the transformer. For example, transformers can dissipate heat through natural cooling, forced air cooling, or forced water cooling. To sum up, the rated value on the transformer nameplate refers to some important electrical parameters and performance indicators of the transformer, which is of great significance for the selection, installation and operation of the transformer. Discover more info on transformer coil.

Rising temperature: The capacity of the transformer will decrease as the temperature rises. Therefore, it is necessary to consider the appropriate heat dissipation method and heat dissipation area when designing the transformer to ensure that the temperature rise of the transformer does not exceed the allowable range. Connection method: Different transformer connection methods, such as star, delta, etc., will also affect the capacity of the transformer. For the star connection, the capacity of the transformer can be increased by about 3 times; for the delta connection, the capacity of the transformer is relatively small. Insulation level: The insulation level of the transformer determines the insulation capability and safety performance of the transformer, and also affects the capacity of the transformer. To sum up, the capacity of the transformer is related to factors such as input voltage and output voltage, load nature, temperature rise, connection method and insulation level. When selecting a transformer, it is necessary to comprehensively consider various factors according to the actual situation to ensure the normal operation and stability of the transformer.

Epoxy resin is non – combustible, flame retardant, self – extinguishing solid insulation material, safe and clean. It is also a solid insulation material with proven insulation and heat dissipation technology for more than 40 years.Epoxy resin products can be used for dry type transformer, for insulation parts, for instrument transformer, for electrical composite parts and for room temperature curing. Epoxy resin dry transformer uses epoxy resin as insulation material. The high and low voltage windings are made of copper tape (foil), industrial epoxy resin is poured in vacuum and cured, forming a high strength FRP body structure. Insulation grade F, H. Epoxy resin dry transformer has the characteristics of good electrical performance, strong resistance to lightning impact, strong resistance to short circuit, small size and light weight. Temperature display controller can be installed to display and control the operating temperature of the transformer winding to ensure the normal service life of the transformer.

The cooling methods are divided into natural air cooling (AN) and forced air cooling (AF). When air cooled naturally, the transformer can run continuously for a long time under rated capacity. When forced air cooling, transformer output capacity can be increased by 50%. Suitable for intermittent overload operation, or emergency overload operation; Because the load loss and impedance voltage increase greatly during overload, it is in non-economic operation state, so it should not be in continuous overload operation for a long time.Welcome to inquiry price for dry type substation transformer.

Power distribution cabinet transformer is one of the important equipment in the power supply and distribution system of industrial and mining enterprises and civil buildings. It lowers the network voltage of 10(6)kV or 35kV to 230/400V bus voltage used by users. This kind of product is suitable for AC 50(60)Hz, three-phase maximum rated capacity 2500kVA(single-phase maximum rated capacity 833kVA, generally not recommended to use single-phase transformer), can be used in the indoor (outdoor), the capacity of 315kVA and below can be installed on the rod, the ambient temperature is not higher than 40℃, not less than -25℃, The maximum daily average temperature is 30℃, the maximum annual average temperature is 20℃, the relative humidity is not more than 90%(the ambient temperature is 25℃), and the altitude is not more than 1000m.

The trademark “CANWIN” has won the title of the famous trademark of the international electrotechnical association and the trademark CANWIN CNC” has been recognized as a high -end manufacturing brand in China. We has been judged as Guangdong province enterprise that strictly contracts and keeps promises” and won the honor of”excellent supplier of Chinese electrical equipment” successively. The company has a number of national patents, and won the Guangdong provincial department of science and technology major project award the first set of domestic new products award; The company is a key enterprise in the field of electric power electrical equipment manufacturing in China, and a core professional equipment supplier of state grid, China southern power grid and many listed companies in the electric power industry. Its products are exported to countries and regions in Asia, Africa, Latin America, Europe and the United States.

Canwin, a electrical equipment manufacturer mainly produces 150 model oil-type transformer core shearing equipment below 1 600KVA, 300 model dry type transformer core shearing equipment below 6300KVA, 400 model special transformer core shearing equipment below 12500KVA and 600 model special transformer core shearing equipment below 63000KVA. 800 model extra transformer core shearing equipment, 1000 model extra transformer core shearing equipment, the type 1250 model CRGsilicon steel CNC slitting machine, and the dry type transformer core under 110KV automatic cutting and laminated processing center, oil transformer core automatic cutting robot automatic lamination processing center, reactor cutting center below 35Kv, 220KV high voltage china transformer equipment tc. Transformer core & transformer coil manufacturing and assembly, including coil windings using copper and silver alloyed or continuously transposed copper cable.Canwin hire famous designer in Europe as our senior consultant, and germany Siemens as our strategic partner. The products have formed 5 series and more than 50 specifications.Canwin is your best choice of electrical equipment suppliers.

As a result of mutual inductance, a transformer produces a transformed voltage or current when the magnetic flux produced by one winding (primary winding) links with another winding (secondary winding). There is a magnetic coupling between these two windings, and they are electrically isolated. In addition, magnetic reluctance is also known as opposition to magnetic flux flow. If, for example, the magnetic flux produced by a primary winding passes through air or any nonferrous material in order to reach a secondary winding in a transformer, it would result in a reduction in magnetic flux. Due to the high reluctance of air or nonferrous materials, it will reduce magnetic flux. Discover additional info on https://www.canwindg.com/

With the development of the times, people’s demand for power supply and the reliability of power supply are increasingly high, so the smart grid has emerged accordingly.In the power system, the core and hub of the substation is the transformer.The function of the transformer is mainly to distribute and convert electric energy. The normal operation of the transformer directly affects the normal function of the substation.The intelligent operation of the transformer mainly involves the protection and status monitoring of the transformer, so as to achieve real-time monitoring of the transformer and ultimately ensure the safety and reliability of power supply.

To accommodate the needs of grid voltage changes, the high-voltage side of the transformer has taps, which can be adjusted by adjusting the number of turns in the high-voltage winding to regulate the output voltage on the low-voltage side. Rated current (A): The current allowed to pass through the transformer for a long time under rated capacity. No-load loss (kW): The active power drawn when a rated voltage at rated frequency is applied to one winding terminal and the remaining windings are open circuit.It is related to the performance and manufacturing process of the core silicon steel sheet, as well as the applied voltage.

Poor power quality can severely impact the performance of transformer equipment, leading to a variety of negative outcomes. These consequences not only affect the operational efficiency of the equipment but also pose significant economic concerns. One of the primary damages caused by poor PQ is the deterioration of the transformer’s health. Poor PQ, characterized by factors like voltage sags, swells, harmonics, and transients, can cause excessive heating in transformers. This undue heat can degrade the insulation material used in transformers, subsequently reducing their lifespan and potentially leading to catastrophic failures. Therefore, poor power quality can lead to considerable damage to transformer equipment, resulting in economic losses, reduced energy efficiency, and decreased productivity. Therefore, maintaining high power quality is crucial for the optimal performance of transformer equipment and overall operational efficiency.