Press "Enter" to skip to content

Tecna swivel electrode online store UK

John Concrane 0

Weld size (nugget diameter) is typically slightly less than the diameter of the impression the electrode creates on the material. These dimensions and other spot welding parameters are given in Table I for aluminum, carbon and stainless steel. For simplicity, such standards can be specified by the designer as the controlling print information on spot welds. Base metal strength and spot weld strength are interrelated. Table I gives realistic strength expectations for design purposes. For economy, avoid over-specification of welds.

One alternative to plug welding is “MIG spot welding”. It is similar to plug welding, although a hole is not drilled in the front sheet of metal. Instead the power of the MIG is relied upon to fully melt the top sheet and penetrate into the back sheet. This technique would require less preparation work than plug welding, but the two sheets need to be in tight contact and high amps used to complete the weld or else the weld could be very weak. Plug welding is a much more suitable technique for all but the most experienced welders.

Although aluminium has a thermal conductivity and electrical resistance close to that of copper, the melting point for aluminium is lower, which means welding is possible. However, due to its low resistance, very high levels of current need to be used when welding aluminium (in the order of two to three times higher than for steel of equivalent thickness). In addition, aluminium degrades the surface of copper electrodes within a very small number of welds, meaning that stable high quality welding is very hard to achieve. For this reason, only specialist applications of aluminium spot welding are currently found in industry. Various new technology developments are emerging to help enable stable high quality spot welding in aluminium. See extra info on Tecna Spot Welder.

Electric welding relies on the Joule Effect. This is the thermal result of the electrical resistance, occurring when an electric current passes through a conductive metal – in this case metal sheets for assembly. If that last sentence went over your head, here’s how it works: to weld two or more sheets together without adding a filler metal, they are tightly compressed between two heat-resistant electrodes (i.e. non-melting), generally made of copper, and a high-intensity current is applied to melt the plates together at that point. The result is a small merging of metal which constitutes a welding point. The welding time is very short, between one and two seconds, and the shape of the resulting welding spot depends on your choice of electrodes.